Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0290890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729217

RESUMO

Protein regions consisting of arrays of tandem repeats are known to bind other molecular partners, including nucleic acid molecules. Although the interactions between repeat proteins and DNA are already widely explored, studies characterising tandem repeat RNA-binding proteins are lacking. We performed a large-scale analysis of human proteins devoted to expanding the knowledge about tandem repeat proteins experimentally reported as RNA-binding molecules. This work is timely because of the release of a full set of accurate structural models for the human proteome amenable to repeat detection using structural methods. The main goal of our analysis was to build a comprehensive set of human RNA-binding proteins that contain repeats at the sequence or structure level. Our results showed that the combination of sequence and structural methods finds significantly more tandem repeat proteins than either method alone. We identified 219 tandem repeat proteins that bind RNA molecules and characterised the overlap between repeat regions and RNA-binding regions as a first step towards assessing their functional relationship. We observed differences in the characteristics of repeat regions predicted by sequence-based or structure-based methods in terms of their sequence composition, their functions and their protein domains.


Assuntos
Conhecimento , Proteínas de Ligação a RNA , Humanos , Modelos Estruturais , Proteínas de Ligação a RNA/genética , Sequências de Repetição em Tandem/genética , RNA/genética
2.
Bioinformatics ; 38(6): 1745-1748, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954795

RESUMO

SUMMARY: Conformational changes in RNA native ensembles are central to fulfill many of their biological roles. Systematic knowledge of the extent and possible modulators of this conformational diversity is desirable to better understand the relationship between RNA dynamics and function. We have developed CoDNaS-RNA as the first database of conformational diversity in RNA molecules. Known RNA structures are retrieved and clustered to identify alternative conformers of each molecule. Pairwise structural comparisons between all conformers within each cluster allows to measure the variability of the molecule. Additional annotations about structural features, molecular interactions and biological function are provided. All data in CoDNaS-RNA is free to download and available as a public website that can be of interest for researchers in computational biology and other life science disciplines. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available at http://ufq.unq.edu.ar/codnasrna or https://codnas-rna.bioinformatica.org/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , RNA , Conformação Molecular , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...